Quotients of Uniform Positroids

نویسندگان

چکیده

Two matroids $M$ and $N$ are said to be concordant if there is a strong map from $M$. This also can stated by saying that each circuit of union circuits In this paper, we consider class called positroids, introduced Postnikov, utilize their combinatorics determine concordance among some them.
 More precisely, given uniform positroid, give purely combinatorial characterization family positroids with it. We do means associated decorated permutations. As byproduct our work, describe completely the collection particular subset positroids.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorics of Positroids

Recently Postnikov gave a combinatorial description of the cells in a totally-nonnegative Grassmannian. These cells correspond to a special class of matroids called positroids. There are many interesting combinatorial objects associated to a positroid. We introduce some recent results, including the generalization and proof of the purity conjecture by Leclerc and Zelevinsky on weakly separated ...

متن کامل

Uniform bounds for quotients of Green functions on C1,1-domains

© Annales de l’institut Fourier, 1982, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...

متن کامل

Positroids and Schubert matroids

Recently Postnikov gave a combinatorial description of the cells in a totallynonnegative Grassmannian. These cells correspond to a special class of matroids called positroids. We prove his conjecture that a positroid is exactly an intersection of permuted Schubert matroids. This leads to a combinatorial description of positroids that is easily computable. The main proof is purely combinatorial,...

متن کامل

Positroids and Non-crossing Partitions

We investigate the role that non-crossing partitions play in the study of positroids, a class of matroids introduced by Postnikov. We prove that every positroid can be constructed uniquely by choosing a non-crossing partition on the ground set, and then freely placing the structure of a connected positroid on each of the blocks of the partition. This structural result yields several combinatori...

متن کامل

Contraction and Restriction of Positroids in Terms of Decorated Permutations

A positroid is a matroid defined by Postnikov to study the cells in the non-negative part of the Grassmannian. They are in bijection with decorated permutations. We show a way to explain contraction and restriction of positroids in terms of decorated permutations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Combinatorics

سال: 2022

ISSN: ['1077-8926', '1097-1440']

DOI: https://doi.org/10.37236/10056